Sign In
Access to Author tools and Claude Code Assistant requires authentication.
📦

Symposion

AI debate framework with Goodhart's Law detection

Active v0.6.0 MIT
[vm] symposion.homelab :3000

Tech Stack

Go Temporal PostgreSQL pgvector Mattermost Fiber Claude CLI Gemini CLI

Requirements

  • Go 1.24+
  • Temporal Server
  • PostgreSQL 15+ with pgvector
  • Mattermost
  • Claude CLI

Features

  • Multi-agent debates (Claude, Gemini, GPT)
  • Goodhart's Law detection metrics
  • Temporal workflow orchestration
  • Vector memory for cross-topic learning
  • Human-in-the-loop approval gates
  • Mattermost channel integration
  • Implementation plan generation

The Problem: AI Echo Chambers

When multiple AI agents work together, they can fall into consensus traps:

  • Agents agree too quickly without genuine reasoning
  • Debate quality degrades as agents optimize for agreement
  • Goodhart’s Law manifests: agents game consensus metrics
  • Implementation plans lack diverse perspectives

Symposion tackles this by orchestrating structured debates with explicit consensus quality measurement.


Architecture

A 10-step Temporal workflow coordinates the research process:

┌─────────────────────────────────────────────────────────────┐
│                    TEMPORAL WORKFLOW                         │
│  1. Parse Input → 2. Create Channels → 3. RAG Recall        │
│  4. Initial Positions → 5. Debate Rounds → 6. Consensus     │
│  7. Human Gate → 8. Implementation → 9. Build → 10. Report  │
└─────────────────────────────────────────────────────────────┘
                            │
        ┌───────────────────┼───────────────────┐
        ▼                   ▼                   ▼
   ┌─────────┐        ┌─────────┐        ┌─────────┐
   │  Agent  │        │  Agent  │        │  Agent  │
   │ (Claude)│        │ (Gemini)│        │  (GPT)  │
   └─────────┘        └─────────┘        └─────────┘
        │                   │                   │
        └───────────────────┼───────────────────┘
                            ▼
                    ┌───────────────┐
                    │  Mattermost   │
                    │  (4 channels) │
                    └───────────────┘
ChannelPurpose
debateAgent discussions and position statements
planningImplementation plan drafts
buildCode scaffolding and artifacts
reviewsHuman feedback and approvals

Goodhart’s Law Detection

The system calculates metrics to detect when agents are gaming for agreement rather than genuine consensus:

Consensus Quality Metrics:

  • Position Diversity: How different are initial positions?
  • Argument Depth: Are agents engaging with specifics?
  • Concession Authenticity: Do position changes cite evidence?
  • Dissent Preservation: Are minority views maintained?

When metrics drop below thresholds, the system flags potential Goodhart gaming and can inject adversarial prompts to restore genuine debate.


Vector Memory

PostgreSQL with pgvector stores debate outcomes for cross-topic learning:

  • 1536-dimension embeddings via OpenAI
  • HNSW indexing for fast similarity search
  • RAG recall brings relevant past debates into context
  • Agents learn from previous research sessions

Human-in-the-Loop

Critical decision points require human approval:

  1. Research Direction: Approve debate topic framing
  2. Implementation Plan: Sign off before code generation
  3. Build Artifacts: Review scaffolded repositories

Signals can timeout after 7 days with configurable defaults.


Current Status

ComponentStatus
Temporal orchestrationComplete
Mattermost integrationComplete
CLI agent providersComplete
Vector memory/RAGComplete
Goodhart metricsComplete
API providers (native)Stubbed
UI dashboardIn progress

Summary

BenefitDescription
DiversityMultiple AI perspectives prevent echo chambers
QualityGoodhart detection ensures genuine reasoning
MemoryVector store enables cross-topic learning
ControlHuman gates at critical decision points